Interactive Content-Based Retrieval in Video Databases Using Fuzzy Classification and Relevance Feedback
نویسندگان
چکیده
This paper presents an integrated framework for interactive content-based retrieval in video databases by means of visual queries. The proposed system incorporates algorithms for video shot detection, keyframe and shot selection, automated video object segmentation and tracking, and construction of multidimensional feature vectors using fuzzy classification of color, motion or texture segment properties. Retrieval is then performed in an interactive way by employing a parametric distance between feature vectors and updating distance parameters according to user requirements using relevance feedback. Experimental results demonstrate increased performance and flexibility according to user information needs.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملInteractive Content Based Image Retrieval Using Ripplet Transform and Fuzzy Relevance Feedback
In this article, a novel content based image retrieval (CBIR) system based on a newMultiscale Geometric Analysis (MGA)-tool, called Ripplet Transform Type-I (RT) is presented. To improve the retrieval result, a fuzzy relevance feedback mechanism (F-RFM) is also implemented. Fuzzy entropy based feature evaluation mechanism is used for automatic computation of revised feature’s importance and sim...
متن کاملFUZZY RELEVANCE FEEDBACK IN CONTENT−BASED IMAGE RETRIEVAL SYSTEMS USING RADIAL BASIS FUNCTION NETWORK (FriAmOR7)
This paper presents a new framework called fuzzy relevance feedback in interactive content−based image retrieval (CBIR) systems based on soft−decision. An efficient learning approach is proposed using a fuzzy radial basis function network (FRBFN). Conventional binary labeling schemes require a crisp decision to be made on the relevance of the retrieved images. However, user interpretation varie...
متن کاملInteractive Image Retrieval with Wavelet Features
This paper presents an iterative Content Based Image Retrival(CBIR) system with Relevance Feedback (RF), in which M-band wavelet features are used as representation of images. The pixels are clustered using Fuzzy C-Means (FCM) clustering algorithm to obtain an image signature and Earth Mover’s Distance (EMD) is used as a distance measure. Fuzzy entropy based feature evaluation mechanism is used...
متن کامل